Not all of the best sites to observe are barren desert or tree-covered mountaintops. Dave Pinsky took this image from Death Valley, looking west to the Panamint Range from Bad Water. It was taken this March after the deluge we experienced, hence the relatively large amount of water here. Dave reports the seeing was pretty good. The advantage of a place like this is, and Astronomy in general, is that because we often have to go out of our way to get to pristine skies, if the clouds don’t cooperate, we still have a great view!

December Election Results

Well, the results from the December 12th election are as follows.

President David Sovereign
Vice-President . Mary Brown
Secretary Wendy Brown
Treasurer Darrell Dooley

Board Members: Peter DeHoff, PJ Goldfinger, Herman Meyerdierks, Norm Vargas, Don DeGregori, Bob Deubler, Larry Guerra, Kim Stober, Virginia Ward

Let’s give our best wishes to the officers and board members in this, the beginning of the LAAS’ 80th year, a year we will hopefully see the reopening of Griffith Observatory.

David Nakamoto

Editor's Message

The start of our 80th year, the anticipated reopening of Griffith Observatory . . . the beginning of 2006 speaks for itself. For those wishing to submit material for the bulletin, the deadline is the 10th of each month. I need the time to prepare all material into the bulletin and get it to Peter and Minghua in time for printing and mailing.

Here is a website hosted by KABC Ch 7. These webcams are good for checking local weather conditions and cloud cover:

http://abclocal.go.com/kabc/story?section=cams&id=3319445

— David Nakamoto

The Outreach Program

The Outreach program, where LAAS members visit elementary schools and put on Star Parties for the students and parents has been successful. So far this year, we have organized twelve programs for the kids. Paul Wicker, better known as Galileo Guy, really brings Astronomy to life with his skit about Galileo and his contributions to the science. He shows a slide show about the planets, sun and moon. And including a question and answer session, helps to show Astronomy can be fun.

During this time, the other LAAS members set up their telescopes on the playground, for evening viewing of the stars. After Galileo has concluded his program, the kids proceed to where the scopes are setup. This can be quite

EVENTS CALENDAR

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 7th (Sat)</td>
<td>Public Star Party</td>
<td>Griffith Observatory Satellite Moon, Mars, and Saturn</td>
</tr>
<tr>
<td>Jan 22nd (Sun)</td>
<td>Annual Banquet</td>
<td>(See pg 10 for details)</td>
</tr>
<tr>
<td>Jan 28th (Sat)</td>
<td>Dark Sky Night</td>
<td>Lockwood Valley</td>
</tr>
<tr>
<td>Feb 4th (Sat)</td>
<td>Public Star Party</td>
<td>Griffith Observatory Satellite Moon, Mars, and Saturn</td>
</tr>
<tr>
<td>Feb 13th (Mon)</td>
<td>General Meeting</td>
<td>The Speaker is Amanda Mainzer of JPL. Topic is Brown Dwarfs.</td>
</tr>
<tr>
<td>Feb 25th (Sat)</td>
<td>Dark Sky Night</td>
<td>Lockwood Valley</td>
</tr>
</tbody>
</table>

Membership Annual Dues:

- Youth: $20.00
- Regular (18-65): $35.00
- Senior Citizen (65 and up): $20.00
- Senior Family: $30.00
- Family: $50.00
- Group or Club: $50.00
- Life: $500.00

Additional fees:

- Charter Star member: $30.00
- Star member, with pad: $70.00
- Star member, no pad: $60.00

(Membership due date is indicated on the mailing label)

HANDY PHONE LIST

LAAS Answering Machine: (213) 673-7355
Griffith Observatory
Program: (323) 664-1191
Office: (323) 664-1181
Sky Report: (323) 663-8171
Lockwood Site: (661) 245-2106
(Mt. Wilson Institute: (626) 793-3100)

Vol 80, issue 1
Mars is past opposition, but it’s still in good position for observing and Saturn is coming into view late at night. Orion is beginning to regain control of the winter nights. Although originally intended for our new members, any LAAS member can check out one of these fine instruments.

LAAS-1 - 4.5” f/8 Celestron reflector on a solid Polaris equatorial mount, with Kellner eyepiece, two Orthoscopics, and collimation tool. These two 4.5” reflectors are good telescopes for beginners to learn from since they are both small enough to be easily carried and set up, but with enough aperture to provide good views.

LAAS-2 - 4.5” f/8 Tasco reflector on a motorized Edmund equatorial mount. This telescope has been upgraded with 1.25” accessories, a 6x30 finder, and very solid wooden legs. It comes fully equipped with a set of three Kellner eyepieces and a collimation tool.

LAAS-4 – 6” f/5 reflector by Telescopics on a low Dobsonian mount. It is equipped with a set of three Orthoscopic eyepieces.

LAAS-7 – 80mm f/15 Meade refractor on an Orion Sky View Deluxe equatorial mount. It is equipped with two Plossl eyepieces and an Orthoscopic. These two refractors are ideal to observe Mars during this opposition.

LAAS-8 – 80mm f/11.4 Selsi refractor on an equatorial mount. It is equipped with two Plossl eyepieces and an Orthoscopic.

For further information concerning these loaner telescopes call: David Sovereign at (626) 794-0646.

LAAS Bulletin

LOANER CORNER

hectic, because of the enthusiasm of the kids. Most soon learn to be patient, get in line, and not bump the telescopes. Soon we hear lots of wow’s upon seeing the moon or the planets up close. We get lots of questions and try to simply explain what they are seeing. Many parents and teachers are there too, and I know they appreciate our effort. And of course we adults all hope that this time viewing the heavens will instill in the students an interest in science that will benefit through life.

These are the schools we have visited so far this year, 2005.

March 11, Ivanhoe Elementary School
March 15, Washington Elementary School
March 15, Barnhart School
April 15, Irwin Elementary
April 20, Monterey Park (Girl Scouts)
April 20, Mayfair High School
May 13, St. Catherine of Siena School
June 14, Hollencrest Middle school, W. Covina
Aug12, Temescal Gateway Park
Nov 1, East Valley Middle School
Dec 7, San Gabriel Elementary School
Dec 8, Serrania Elementary School

And the LAAS members that contributed their time, expertise and effort: Bob Alborsian, Ken Allen, Dave Bereau, Mary Brown, Dan Dickerson, Don DeGregori, Tom Drouet, Reginaldo Flores, Jim Hunter, Penny Hunter, Jamie Johnson, Herbert Kraus, Tom Meneghini, Herman Meyerdirks, Grant Mills, Tim Thompson, Norm Vargas, and Paul Wicker. If I left anybody out, please forgive me. I hope we can have a successful Outreach program again next year.

Along with Paul Wicker and myself, thanks very much.

Don DeGregori

LAAS Bulletin

Here’s a sneak peek at the new Zeiss Projector. The planets, Sun, and Moon are projected from the monolithic blocks in the foreground, while the star projector sites in the background. And for those that pine for the old projector, all I can say is . . . you’ll be holding your breath when you see the stars from this projector. —— David Nakamoto

Vol 80, issue 1
These days, it’s amazing what can be done with a desktop or laptop computer. The improvements in computer speed, memory, monitors and video cards have led to vast improvements, not the least of which is the transformation of computers within just the last two generations or forty years, from mainframes the size of a desk to laptops that fit, well, on your lap! And what was capable only with mainframes a few decades ago can be done faster, cheaper, and with less effort on a computer you can carry easily around with you. But even within the PC realm, vast changes have occurred. This is especially true for computer graphics and simulations. Compared with the early 286 and 6510 machines, gone are the flatly rendered planet surfaces, dots for the moons, and bloated stars. The very realistic scenes modern computers and their software can produce are reminiscent of the work of Dr. James Blinn, who in the 1970s and 1980s used a PDP or VAX mainframe and hours of rendering time to produce the Voyager animations that were state of the art back then, and certainly at the cutting edge of things. Now, things have progressed to where anyone with a decent machine can produce replicas of those animations as you sit and watch the monitor, and even amateurs can write their own software to compete with the software development houses. One such program is Celestia. And not only does Celestia produce high quality visions of spaceflight, but it’s free!

Celestia is a solar system simulation, not a planetarium program per se. In other words, it does not show a lot of deep sky objects, and it’s not meant to plan an observing session. What it does do is provide near photo-realistic displays of Solar System situations. Take a look at image on the next page, a simulation of the view Pioneer 11 had as it prepared to pass Jupiter’s South Polar regions on its front-to-back journey through the Jovian system on its way to Saturn. Jupiter is rendered very accurately, and in the lower right corner Pioneer 11 itself is rendered quite well, although it appears as if the antenna is pointed straight north instead of south.
You Know You’re a Deep Sky Person, When . . .

1. you consider the Moon a major annoyance
2. you consider Jupiter “light pollution”.
3. you spend most of your time looking at or for objects you can barely see.
4. your favorite objects are objects you can barely see.
5. you enjoy looking at faint fuzzies with the smallest possible aperture.
6. you enjoy looking at faint fuzzies with the largest possible aperture.
7. you like to choose objects that are easier to imagine than to see.
8. your observing schedule demands that you search for objects in twilight.
9. you keep thinking that if only the stars would go away, it might really get dark.
10. you wonder how your favorite objects missed getting included in the New General Catalog or the Index Catalog
11. you’re not sure that anything in this solar system counts as astronomy any more.
12. you’re amazed that anyone needs artificial light to read charts.
13. you can’t be bothered with Messier objects.
14. you can read all the NGC abbreviated visual descriptions without using the key, but you have to be careful not to cheat by just remembering what things look like.
15. you view a major earthquake as an opportunity for a close-in dark sky star party.
16. you welcome (and have even considered instigating) power cuts, but only if they occur on clear moonless nights.

Submitted by David Sovereign

Pioneer 11 was the only spacecraft with a camera that undertook passing by both of Jupiter’s poles (Ulysses chose a similar path, but carried no cameras) and therefore is the only one with a clear look at either pole. But to get to Saturn, Pioneer had to fly by Jupiter front to back, unlike the Pioneer 10, both Voyagers, and even Cassini. This is because, unlike those other spacecraft, to reach Saturn from where Jupiter was at the time, Pioneer had to fly back across the Solar System, because Saturn was at the other end of the Solar System when Pioneer 11 flew by Jupiter! It was probably the worst trajectory to go to get to Saturn, but it did mean that Pioneer 11 would beat both Voyagers as the first spacecraft to reach Saturn.

Celestia recreates this trajectory, so as with this image, Pioneer 11 is approaching Jupiter from ahead of it in the planet’s orbit, instead of behind like every other spacecraft. It then swung around the south pole of Jupiter, around the back, and finally exited behind and north of the planet. Hopefully I’ll be able to host the animation of this flyby sometime soon on my website, but for those who like to fiddle with programs, you can
download Celestia and replay the flyby yourself.

Celestia provides a lot of flexibility in rendering scenes. You can pick any planet, satellite, spacecraft within the database, or the Sun as the location to view from, and instruct the program to follow along with that object as it moves. You can specify to orbit around the object. You can even go into synchronous orbit around that object, keeping your position stationary above the current point facing you, so it the object appears not to move in front of you. You can designate any other object to look at, with options to center it on the screen, and tracking it as it moves. All objects within the Solar System and in the database are rendered as accurately as the current knowledge permits, as well as the stars in the local area to about 30 light years, although I’m not sure the list is complete. Certainly only a few asteroids and comets are in the database, but these can be added, but how this is done I haven’t investigated.

Time and date can be set, although I don’t know the limits, or how accurate the simulation would be many years into the past or future. I have not found a way to set the location to a specific location on the earth, necessary to view solar eclipses accurately. Celestia allows you to generate a list of locations on a planet, which it can then display on the

The Voyager Mission to the Outer Planets and the Race to Interstellar Space

By his own admission, Tim Hogle is a chronic adventurer and amateur astronomer (OCA Charter member) who has turned to a life of spacecraft operations. In 1978, armed with a degree in electrical engineering and five years of experience flying Navy aircraft, Tim went to the Jet Propulsion Laboratory in Pasadena, California and signed up for three exciting years of space exploration with the Voyager mission to Jupiter and Saturn, which NASA had launched the previous year. He decided to stay.

Although Voyager was planned as a four-year mission, there was an option to send one of the twin spacecraft (Voyager 2) on to Uranus and Neptune if the Saturn encounters were successful and Voyager 2 was still healthy. In fact, even after Neptune in 1989 both Voyager 1 and 2 were so healthy that JPL and NASA had to figure out what to do with them next. And so the idea of a Voyager Interstellar Mission was conceived, with the objectives of studying the outer reaches of the heliosphere (the region of the sun’s influence) and eventually crossing the boundary into interstellar space.

Although these spacecraft could theoretically continue providing unique science for another 30 years (until 2020), even at that time the most optimistic mission planners and engineers thought there was only a slim chance that the spacecraft would survive more than another ten years. But no one asked Tim what he thought. And Tim was discrete enough not to volunteer too much optimism, thereby maintaining a desirable impression of sanity.

Tim’s official title is Voyager Spacecraft Systems Engineer, but he has been (and still is) very much involved with all aspects of spacecraft operations. By not succumbing to the usual temptation of moving on to glitzy new missions, he has gained a wide range of knowledge about the Voyagers.

So come out and hear Tim tell about the history and future of the Voyager mission, including some very exciting recent results. He has a personal view of the spell-binding excitement of first-ever planetary flybys, the suspense of anticipating the effects of unknown environments, never-before-attempted feats of navigational accuracy, the challenges of keeping these old robots going with string and baling wire for a quarter century after their warranty expired, and expectations for the future.

More info about the Voyager mission may be found at http://voyager.jpl.nasa.gov.
Annual Banquet

Each year, in January, the LAAS continues a tradition started by former president Gordon Mitchell, an annual awards banquet. Here we take the time to get together and honor those members who stand out above the throng, for their accomplishments in support of the LAAS. The banquet moves around each year, to accommodate a membership that spreads all over the Los Angeles area.

Since this is the 80th anniversary of the LAAS, the Society has decided to partially subsidize the cost, making it easier for more people to attend. Therefore, the cost is a mere $35 in advance, $40 at the door per person. Payment must be received no later than January 8th to qualify for the lower rate. At this low price, seats will go very fast, so be sure to make your reservations quickly for you and up to 1 guest for this fantastic event. Send your check, made payable to the Los Angeles Astronomical Society to

Los Angeles Astronomical Society
1815 Avalon Street
Los Angeles, CA 90026

The Monterey Room at Monterey Hills Restaurant is where we’ll meet. The date is Sunday, January 22nd. We can start at 5PM. Speaker will be Tim Hogle from the Voyager project.

Address is:

3700 W. Ramona Blvd.
Monterey Park, CA 91754
(323) 264-8400
(323) 264-8426

Directions to get there: traveling north on the I-710 (Long Beach) freeway, exit on Ramona, just before the I-10 (San Bernardino) freeway. At the end of the offramp, continue straight ahead, uphill, and into the restaurant parking lot.

Traveling east or west on the I-10 freeway, exit on Atlantic, go south to Garvey Ave. and turn right. Bear left and go uphill on W. Garvey Ave., which becomes Ramona. Turn right into the driveway for Luminaria’s, but go around Luminaria’s and go downhill to the Monterey Hills, which is just below Luminaria’s. OR, continue on Ramona to a left run onto Corporate Center Dr., and then turn left where the offramp from the 710 is, and go uphill into the parking lot for Monterey Hills.

Hope to see you there! ♡

(Continued on page 11)

(Continued on page 8)
images. The one on the next page shows a simulation of the Galileo spacecraft’s very close approach to Callisto during one of its orbits around Jupiter. You can see where the simulation has its limits; there is a strip of area at the bottom of Callisto that have no surface image information. Of course, seeing this moon, and Ganymede flyby as Galileo approached so close to those objects is even more dramatic when rendered as an animation. I noticed something interesting at the end of the Galileo mission, at least as far as Celestia is concerned. There is no more trajectory information past the end of the mission, which ended with Galileo plummeting into Jupiter to prevent it crashing into Europa and possibly contaminating it with earth organisms. Therefore, the location of Galileo and the viewer remain fixed in space after this time, with Jupiter receding away. Another effect I’ve noticed is that in some cases the flyby is so close to the object that Celestia cannot render the scene, and you see the object disappear for a brief time. This happened with some of the Callisto flybys by Galileo.

Celestia is freeware. You can even get the listing of the source code, written in C++, and change it. In fact, like Linux, the philosophy behind Celestia is that if the project were made as public as possible, then those with the desire and ability to ge Celestia would benefit themselves and others by adding to the program directly. Celestia is a software community project. But you don’t need to adjust the code to add to the library of functions. Models for new solar system objects, and spacecraft and their trajectories, are available at the Celestia Motherlode website.

Celestia shows how far computers and the software running on them have come, both in their inherent power and their accessibility to the general public. Although programming Celestia requires the skills of a software programmer who understands C, any PC running a recent version of Windows or a Mac running OS X can have the power to render scenes from the history of spaceflight quickly and easily, that just twenty years ago required a PDP or VAX to do, and not in realtime. So why not tour the Solar System the way the early NASA animators such as Dr. Blinn did a couple of decades ago, but with in realtime?

As a final showcase, below is a simulation of the spectacular view Voyager 2 had as it left the Saturn system on route to Uranus, another 5 years and over a billion miles from when and where it saw this view, looking back on the ringed planet.

Clear and Steady Nights !
images. The one on the next page shows a simulation of the Galileo spacecraft’s very close approach to Callisto during one of its orbits around Jupiter. You can see where the simulation has its limits; there is a strip of area at the bottom of Callisto that have no surface image information. Of course, seeing this moon, and Ganymede flyby as Galileo approached so close to those objects is even more dramatic when rendered as an animation. I noticed something interesting at the end of the Galileo mission, at least as far as Celestia is concerned. There is no more trajectory information past the end of the mission, which ended with Galileo plummeting into Jupiter to prevent it crashing into Europa and possibly contaminating it with earth organisms. Therefore, the location of Galileo and the viewer remain fixed in space after this time, with Jupiter receding away. Another effect I’ve noticed is that in some cases the flyby is so close to the object that Celestia cannot render the scene, and you see the object disappear for a brief time. This happened with some of the Callisto flybys by Galileo.

Celestia is freeware. You can even get the listing of the source code, written in C++, and change it. In fact, like Linux, the philosophy behind Celestia is that if the project were made as public as possible, then those with the desire and ability to ge Celestia would benefit themselves and others by adding to the program directly. Celestia is a software community project. But you don’t need to adjust the code to add to the library of functions. Models for new solar system objects, and spacecraft and their trajectories, are available at the Celestia Motherlode website.

Celestia shows how far computers and the software running on them have come, both in their inherent power and their accessibility to the general public. Although programming Celestia requires the skills of a software programmer who understands C, any PC running a recent version of Windows or a Mac running OS X can have the power to render scenes from the history of spaceflight quickly and easily, that just twenty years ago required a PDP or VAX to do, and not in realtime. So why not tour the Solar System the way the early NASA animators such as Dr. Blinn did a couple of decades ago, but with in realtime?

As a final showcase, below is a simulation of the spectacular view Voyager 2 had as it left the Saturn system on route to Uranus, another 5 years and over a billion miles from when and where it saw this view, looking back on the ringed planet.

Clear and Steady Nights !
Annual Banquet

Each year, in January, the LAAS continues a tradition started by former president Gordon Mitchell, an annual awards banquet. Here we take the time to get together and honor those members who stand out above the throng, for their accomplishments in support of the LAAS. The banquet moves around each year, to accommodate a membership that spreads all over the Los Angeles area.

Since this is the 80th anniversary of the LAAS, the Society has decided to partially subsidize the cost, making it easier for more people to attend. Therefore, the cost is a mere $35 in advance, $40 at the door per person. Payment must be received no later than January 8th to qualify for the lower rate. At this low price, seats will go very fast, so be sure to make your reservations quickly for you and up to 1 guest for this fantastic event. Send your check, made payable to the Los Angeles Astronomical Society to

Los Angeles Astronomical Society
1815 Avalon Street
Los Angeles, CA 90026

The Monterey Room at Monterey Hills Restaurant is where we’ll meet. The date is Sunday, January 22nd. We can start at 5PM. Speaker will be Tim Hogle from the Voyager project.

Address is:

3700 W. Ramona Blvd.
Monterey Park, CA 91754
(323) 264-8400
(323) 264-8426

Directions to get there: traveling north on the I-710 (Long Beach) freeway, exit on Ramona, just before the I-10 (San Bernardino) freeway. At the end of the offramp, continue straight ahead, uphill, and into the restaurant parking lot.

Traveling east or west on the I-10 freeway, exit on Atlantic, go south to Garvey Ave. and turn right. Bear left and go uphill on W. Garvey Ave., which becomes Ramona. Turn right into the driveway for Luminaria's, but go around Luminaria's and go downhill to the Monterey Hills, which is just below Luminaria's.

OR, continue on Ramona to a left run onto Corporate Center Dr., and then turn left where the offramp from the 710 is, and go uphill into the parking lot for Monterey Hills.

Hope to see you there! ♦

(Continued on page 11)

(Continued on page 8)

Vol 80, issue 1
download Celestia and replay the flyby yourself.

Celestia provides a lot of flexibility in rendering scenes. You can pick any planet, satellite, spacecraft within the database, or the Sun as the location to view from, and instruct the program to follow along with that object as it moves. You can specify to orbit around the object. You can even go into synchronous orbit around that object, keeping your position stationary above the current point facing you, so it the object appears not to move in front of you. You can designate any other object to look at, with options to center it on the screen, and tracking it as it moves. All objects within the Solar System and in the database are rendered as accurately as the current knowledge permits, as well as the stars in the local area to about 30 light years, although I’m not sure the list is complete. Certainly only a few asteroids and comets are in the database, but these can be added, but how this is done I haven’t investigated.

Time and date can be set, although I don’t know the limits, or how accurate the simulation would be many years into the past or future. I have not found a way to set the location to a specific location on the earth, necessary to view solar eclipses accurately. Celestia allows you to generate a list of locations on a planet, which it can then display on the

The Voyager Mission to the Outer Planets and the Race to Interstellar Space

By his own admission, Tim Hogle is a chronic adventurer and amateur astronomer (OCA Charter member) who has turned to a life of spacecraft operations. In 1978, armed with a degree in electrical engineering and five years of experience flying Navy aircraft, Tim went to the Jet Propulsion Laboratory in Pasadena, California and signed up for three exciting years of space exploration with the Voyager mission to Jupiter and Saturn, which NASA had launched the previous year. He decided to stay.

Although Voyager was planned as a four-year mission, there was an option to send one of the twin spacecraft (Voyager 2) on to Uranus and Neptune if the Saturn encounters were successful and Voyager 2 was still healthy. In fact, even after Neptune in 1989 both Voyager 1 and 2 were so healthy that JPL and NASA had to figure out what to do with them next. And so the idea of a Voyager Interstellar Mission was conceived, with the objectives of studying the outer reaches of the heliosphere (the region of the sun's influence) and eventually crossing the boundary into interstellar space.

Although these spacecraft could theoretically continue providing unique science for another 30 years (until 2020), even at that time the most optimistic mission planners and engineers thought there was only a slim chance that the spacecraft would survive more than another ten years. But no one asked Tim what he thought. And Tim was discrete enough not to volunteer too much optimism, thereby maintaining a desirable impression of sanity.

Tim's official title is Voyager Spacecraft Systems Engineer, but he has been (and still is) very much involved with all aspects of spacecraft operations. By not succumbing to the usual temptation of moving on to glitzy new missions, he has gained a wide range of knowledge about the Voyagers.

So come out and hear Tim tell about the history and future of the Voyager mission, including some very exciting recent results. He has a personal view of the spell-binding excitement of first-ever planetary flybys, the suspense of anticipating the effects of unknown environments, never-before-attempted feats of navigational accuracy, the challenges of keeping these old robots going with string and baling wire for a quarter century after their warranty expired, and expectations for the future.

More info about the Voyager mission may be found at http://voyager.jpl.nasa.gov. ✦
You Know You’re a Deep Sky Person, When . . .

1. you consider the Moon a major annoyance
2. you consider Jupiter “light pollution”.
3. you spend most of your time looking at or for objects you can barely see.
4. your favorite objects are objects you can barely see.
5. you enjoy looking at faint fuzzies with the smallest possible aperture.
6. you enjoy looking at faint fuzzies with the largest possible aperture.
7. you like to choose objects that are easier to imagine than to see.
8. your observing schedule demands that you search for objects in twilight.
9. you keep thinking that if only the stars would go away, it might really get dark.
10. you wonder how your favorite objects missed getting included in the New General Catalog or the Index Catalog
11. you’re not sure that anything in this solar system counts as astronomy any more.
12. you’re amazed that anyone needs artificial light to read charts.
13. you can’t be bothered with Messier objects.
14. you can read all the NGC abbreviated visual descriptions without using the key, but you have to be careful not to cheat by just remembering what things look like.
15. you view a major earthquake as an opportunity for a close-in dark sky star party.
16. you welcome (and have even considered instigating) power cuts, but only if they occur on clear moonless nights.

Submitted by David Sovereign

Pioneer 11 was the only spacecraft with a camera that undertook passing by both of Jupiter’s poles (Ulysses chose a similar path, but carried no cameras) and therefore is the only one with a clear look at either pole. But to get to Saturn, Pioneer had to fly by Jupiter front to back, unlike the Pioneer 10, both Voyagers, and even Cassini. This is because, unlike those other spacecraft, to reach Saturn from where Jupiter was at the time, Pioneer had to fly back across the Solar System, because Saturn was at the other end of the Solar System when Pioneer 11 flew by Jupiter! It was probably the worst trajectory to go to get to Saturn, but it did mean that Pioneer 11 would beat both Voyagers as the first spacecraft to reach Saturn.

Celestia recreates this trajectory, so as with this image, Pioneer 11 is approaching Jupiter from ahead of it in the planet’s orbit, instead of behind like every other spacecraft. It then swung around the south pole of Jupiter, around the back, and finally exited behind and north of the planet. Hopefully I’ll be able to host the animation of this flyby sometime soon on my website, but for those who like to fiddle with programs, you can
These days, it’s amazing what can be done with a desktop or laptop computer. The improvements in computer speed, memory, monitors and video cards have led to vast improvements, not the least of which is the transformation of computers within just the last two generations or forty years, from mainframes the size of a desk to laptops that fit, well, on your lap! And what was capable only with mainframes a few decades ago can be done faster, cheaper, and with less effort on a computer you can carry easily around with you. But even within the PC realm, vast changes have occurred. This is especially true for computer graphics and simulations. Compared with the early 286 and 6510 machines, gone are the flatly rendered planet surfaces, dots for the moons, and bloated stars. The very realistic scenes modern computers and their software can produce are reminiscent of the work of Dr. James Blinn, who in the 1970s and 1980s used a PDP or VAX mainframe and hours of rendering time to produce the Voyager animations that were state of the art back then, and certainly at the cutting edge of things. Now, things have progressed to where anyone with a decent machine can produce replicas of those animations as you sit and watch the monitor, and even amateurs can write their own software to compete with the software development houses. One such program is Celestia. And not only does Celestia produce high quality visions of spaceflight, but it’s free!

Celestia is a solar system simulation, not a planetarium program per se. In other words, it does not show a lot of deep sky objects, and it’s not meant to plan an observing session. What it does do is provide near photo-realistic displays of Solar System situations. Take a look at image on the next page, a simulation of the view Pioneer 11 had as it prepared to pass Jupiter’s South Polar regions on its front-to-back journey through the Jovian system on its way to Saturn. Jupiter is rendered very accurately, and in the lower right corner Pioneer 11 itself is rendered quite well, although it appears as if the antenna is pointed straight north instead of...
Mars is past opposition, but it’s still in good position for observing and Saturn is coming into view late at night. Orion is beginning to regain control of the winter nights. Although originally intended for our new members, any LAAS member can check out one of these fine instruments.

LAAS-1 - 4.5" f/8 Celestron reflector on a solid Polaris equatorial mount, with Kellner eyepiece, two Orthoscopics, and collimation tool. These two 4.5" reflectors are good telescopes for beginners to learn from since they are both small enough to be easily carried and set up, but with enough aperture to provide good views.

LAAS-2 - 4.5" f/8 Tasco reflector on a motorized Edmund equatorial mount. This telescope has been upgraded with 1.25” accessories, a 6x30 finder, and very solid wooden legs. It comes fully equipped with a set of three Kellner eyepieces and a collimation tool.

LAAS-4 – 6" f/5 reflector by Telescopics on a low Dobsonian mount. It is equipped with a set of three Orthoscopic eyepieces.

LAAS-7 – 80mm f/15 Meade refractor on an Orion Sky View Deluxe equatorial mount. It is equipped with two Plossl eyepieces and an Orthoscopic. These two refractors are ideal to observe Mars during this opposition.

LAAS-8 – 80mm f/11.4 Selsi refractor on an equatorial mount. It is equipped with two Plossl eyepieces and an Orthoscopic.

For further information concerning these loaner telescopes call: David Sovereign at (626) 794-0646.

hectic, because of the enthusiasm of the kids. Most soon learn to be patient, get in line, and not bump the telescopes. Soon we hear lots of wow's upon seeing the moon or the planets up close. We get lots of questions and try to simply explain what they are seeing. Many parents and teachers are there too, and I know they appreciate our effort. And of course we adults all hope that this time viewing the heavens will instill in the students an interest in science that will benefit through life.

These are the schools we have visited so far this year, 2005.

March 11, Ivanhoe Elementary School
March 15, Washington Elementary School
March 15, Barnhart School
April 15, Irwin Elementary
April 20, Monterey Park (Girl Scouts)
April 20, Mayfair High School
May 13, St. Catherine of Siena School
June 14, Hollencrest Middle school, W. Covina
Aug 12, Temescal Gateway Park
Nov 1, East Valley Middle School
Dec 7, San Gabriel Elementary School
Dec 8, Serrania Elementary School

And the LAAS members that contributed their time, expertise and effort: Bob Alborsian, Ken Allen, Dave Bereau, Mary Brown, Dan Dickerson, Don DeGregori, Tom Drouet, Reginaldo Flores, Jim Hunter, Penny Hunter, Jamie Johnson, Herbert Kraus, Tom Meneghini, Herman Meyerdirks, Grant Mills, Tim Thompson, Norm Vargas, and Paul Wicker. If I left anybody out, please forgive me. I hope we can have a successful Outreach program again next year.

Along with Paul Wicker and myself, thanks very much.

Don DeGregori

Here’s a sneak peek at the new Zeiss Projector. The planets, Sun, and Moon are projected from the monolithic blocks in the foreground, while the star projector sites in the background. And for those that pine for the old projector, all I can say is . . . you’ll be holding your breath when you see the stars from this projector. — David Nakamoto
Editor's Message

The start of our 80th year, the anticipated reopening of Griffith Observatory... the beginning of 2006 speaks for itself.

For those wishing to submit material for the bulletin, the deadline is the 10th of each month. I need the time to prepare all material into the bulletin and get it to Peter and Minghua in time for printing and mailing.

Here is a website hosted by KABC Ch 7. These webcams are good for checking local weather conditions and cloud cover:

http://abclocal.go.com/kabc/story?section=cams&id=3319445

— David Nakamoto

The Outreach Program

The Outreach program, where LAAS members visit elementary schools and put on Star Parties for the students and parents has been successful. So far this year, we have organized twelve programs for the kids. Paul Wicker, better known as Galileo Guy, really brings Astronomy to life with his skit about Galileo and his contributions to the science. He shows a slide show about the planets, sun and moon. And including a question and answer session, helps to show Astronomy can be fun.

During this time, the other LAAS members set up their telescopes on the playground, for evening viewing of the stars. After Galileo has concluded his program, the kids proceed to where the scopes are setup. This can be quite

EVENTS CALENDAR

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 7th (Sat)</td>
<td>Public Star Party</td>
<td>Griffith Observatory Satellite Moon, Mars, and Saturn</td>
</tr>
<tr>
<td>Jan 22nd (Sun)</td>
<td>Annual Banquet</td>
<td>(See pg 10 for details)</td>
</tr>
<tr>
<td>Jan 28th (Sat)</td>
<td>Dark Sky Night</td>
<td>Lockwood Valley</td>
</tr>
<tr>
<td>Feb 4th (Sat)</td>
<td>Public Star Party</td>
<td>Griffith Observatory Satellite Moon, Mars, and Saturn</td>
</tr>
<tr>
<td>Feb 13th (Mon)</td>
<td>General Meeting</td>
<td>The Speaker is Amanda Mainzer of JPL. Topic is Brown Dwarfs.</td>
</tr>
<tr>
<td>Feb 25th (Sat)</td>
<td>Dark Sky Night</td>
<td>Lockwood Valley</td>
</tr>
</tbody>
</table>

Membership Annual Dues:

- Youth $ 20.00
- Regular (18-65) $ 35.00
- Senior Citizen (65 and up) $ 20.00
- Senior Family $ 30.00
- Family $ 50.00
- Group or Club $ 50.00
- Life $ 500.00

Additional fees:
- Charter Star member $ 30.00
- Star member, with pad $ 70.00
- Star member, no pad $ 60.00

(Membership due date is indicated on the mailing label)

LAAS Home Page: http://www.laas.org
LAAS Bulletin Online: http://www.laas.org/bulletin.html
Not all of the best sites to observe are barren desert or tree-covered mountaintops. Dave Pinsky took this image from Death Valley, looking west to the Panamint Range from Bad Water. It was taken in March after the deluge we experienced. Hence the relatively large amount of water here. Dave reports the seeing was pretty good. The advantage of a place like this is and Astronomy in general, is that because we often have to go out of our way to get to pristine skies, if the clouds don’t cooperate, we still have a great view. !

December Election Results

Well, the results from the December 12th election are as follows.

President David Sovereign
Vice-President . Mary Brown
Secretary Wendy Brown
Treasurer Darrell Dooley

Board Members: Peter DeHoff, PJ Goldfinger, Herman Meyerdierks, Norm Vargas, Don DeGregori, Bob Deubler, Larry Guerra, Kim Stober, Virginia Ward

Let’s give our best wishes to the officers and board members in this, the beginning of the LAAS’ 80th year, a year we will hopefully see the reopening of Griffith Observatory.

David Nakamoto

Inside this issue

December Election Results .. 1
Editor’s Corner .. 2
Report on the Outreach Program 2,3
The Art of Observing — Celestia-l Fun 4-9
80th Annual Banquet Information 10,11
“You Know You’re a Deep Sky Person When” 12
“Shake It” flashlight .. 13
Monterey Park Observatory Map 13
Loaner Corner .. 14
Events Calendar .. 15
Membership Information .. 15
View from Death Valley (image) .. 16

Notes, corrections, questions, ideas, articles? All are welcome at: BulletinEditor@laas.org.